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Abstract.

Theoretical calculations of ionization spectra in a TPC will give better approximations to measure-

ments than the Gaussian functions used currently. Discrimination for dE/dx particle identification

(PID), can be improved by taking into account the length of particle tracks. In order to understand

that, a distinction must be made between “dE/dx”, the truncated mean dE/dx along a track, and

the mean truncated mean dE/dx of many tracks for a given particle type. Several methods for PID

inspired by the simulations are proposed. Examples are given for pions and kaons.

I. Introduction.

PID is based on the fact that particle momentum is given by pc = Mc2βγ, while ionization is

dependent on particle speed βγ only. Thus we need to measure momentum and ionization of particles

with mass M along their tracks. A good introduction to the subject is given in Section 9 of [1], but

[2] should be consulted for details.

Calculations relevant to PID have been made and presented over several years [3, 4, 5, 6, 7, 8].

Here examples are given which show the improvement in PID which can be achieved if track length

is taken into account explicitly [2, 9].

Good agreement was found between energy loss spectra measured in the STAR TPC and those

calculated with the theory of atomic collisions [9]. Therefore we can hope to obtain a more detailed

understanding for PID from theoretical simulations of the TPC than what we can get from experi-

mental data. An example of experimental data can be seen in Fig. 27.5, p. 010001-212 of [10]. I shall
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show that the dependence of “dE/dx” on x should be taken into account.

The calculations presented here are obtained with Monte Carlo simulations [3] for individual par-

ticle tracks and the subsequent analysis of the distributions for many tracks. The PID analysis is

done with truncated mean values and with likelihood values. The “resolution” in PID is defined by

“overlap” numbers. Overlap numbers depend strongly on the total length of the track measured and

the number of segments in the track.

II. Concepts.

A. Ionization along tracks

To understand and describe PID clearly, it is preferable to replace the concept “dE/dx” currently

in use by the concepts described in Fig. 1. The description of the ionization process used here differs

somewhat from that used e.g. in [1]. A track is defined as the trace of ionization left by the passage

of a fast charged particle through a TPC. The geometry of the detection apparatus consists of

• the measurement of the drift time interval of the electrons produced by one particle and

• the areas defined by the pads in the TPC.

This defines discrete volumes Vi in which the ionization Ii is measured. The length of track

through Vi is called the segment length xi.

A track consists of n segments with lengths xi. The total track length is t =
∑n xi. The energy

loss ∆ by a particle can be described by the number of collisions and the associated energy loss

per collision [3, 11]. In some papers, the concept of clusters is used [1]. For the STAR TPC the

detection of clusters is not practical. Therefore the total energy ∆i deposited in the gas in Vi by the

particle is considered as the primary datum. This deposited energy leads to ionization Ii = ∆i/W ,

where I is the number of electron-ion pairs produced in the gas, and W is the energy needed to

produce one ion pair. The observed quantity is the output of the devices (proportional counters,

amplifiers, ADCs) which convert I into the recorded datum J . Here, it is assumed that a calibra-

tion factor will be determined which relates Ji to ∆i [9]. The quantity called “dE/dx” is equal to J/x.
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Figure 1: Structure of a particle track.

Track lengths in the STAR TPC vary widely. A track may contain segments from up to 13 inner

pad rows with track length x ≥ 1.2 cm, and from up to 32 outer pad rows where x ≥ 2 cm. Therefore,

a straight track perpendicular to the beam axis can have a length of up to t = 13· 1.2 + 32 · 2 = 79.6

cm. An experimental data set of 1.4 · 108 segments [12] contains values of x up to 4 cm. Thus some

tracks could be as long as 160 cm. It will be seen that the overlap numbers show a much stronger

dependence on t than do RMS values. It is the purpose of this Note to show that taking into account

track length in the PID analysis will improve it.

B. Similarities of straggling functions

Straggling functions for single segments, f(∆;βγ, x), are similar in shape but differ in the location

of the most probable energy loss ∆p and the fwhm w. The similarities are shown in Figs. 2 and 3,

where the abscissa is scaled. In Fig. 2, the differences in f(d) for ∆ > 4 keV will not cause serious

problems for the methods using truncated means.
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Figure 2: Straggling functions f(∆;x, pc) for the same pc and several x. The functions are seen to
be similar if linear scaling is used, i.e. ∆x = a + b · ∆r where r represents a reference function for a
certain thickness of gas, and x represents the function for a different thickness of gas. The function
for x = 2 cm is the reference. The number of ∆ above 4 keV is about 30%. Most of these ∆ will not
be included in the values of the truncated mean for a track.

Figure 3: Straggling functions f(∆;x, pc) for the same x and several pc. The functions are seen to
be similar if linear scaling is used, i.e. P ∆ = c + d ·R ∆ where R represents a reference function for a
certain momentum, and P represents the function for a different momentum, .
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C. Truncated mean of energy losses

The truncated mean value of the observed single segment values Ji/x of a single track (with index

j) with n segments, is defined by

dj =
1
rn

rn∑

1

Ji/x (1)

where r is the truncation factor, between 0.6 and 0.7 for STAR TPC (see Sect. 9.3 in [1]). I believe

that the quantity d also is called dE/dx. For a large number of tracks of a given track length t and the

same number of segments we obtain a distribution function f(d) for which the mean value < d > and

the standard (RMS) deviation σ can be calculated. A calculated example of f(d) is shown in Fig. 4

for pions and kaons with momentum p=600 MeV/c traversing 12 inner pad rows (x = 1.2 cm) and

20 outer pad rows (x = 2 cm) in the STAR TPC, with a truncation ratio r = 65%. Note that the

functions are almost symmetric, and therefore < d > will differ little from the most probable value

dp, and fwhm w ∼ 2.36σ. I believe that the quantity < d > also is called dE/dx. It would be better

to distinguish clearly between J/x, d and < d >.

D. Likelihood method

For the simulations described here, the ratio method can be used, e.g. Eq. 44, p. 283 in [13]. It

is used in the following form for a single track (index j)

Lj =
n∑

1

[log f1(Ji;x, p) − log f2(Ji;x, p)] (2)

where log f(J ;x, p) are the calculated straggling (Landau) functions for particles 1 and 2 with mo-

mentum p for segments of length x. This method can be used for curved tracks where x may change

continuously along the track. For a large number of tracks, we obtain distribution functions g(L)

similar to those shown in Figs. 4, 5 and 6. This method gives overlap numbers which can be as much

as 50% smaller than those obtained with the method of truncated means. It is slightly more complex

than the former and I have not used it as much. No further results are given here.
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Figure 4: Calculated functions f(d) of truncated mean values d for pions and kaons with momentum
p = 600 MeV/c traversing 12 inner padrows (x = 1.2 cm) and 20 outer padrows (x = 2 cm), with
r = 65% truncation. Because of the truncation, the average value of t is 54 cm and includes 21
padrows. The solid lines represent the spectra for 106 each of pions and kaons, the broken lines
represent reduced fractions of kaons. The overlap is defined to be the total number of pions plus
the total number of kaons in the area A. A separator defined by the value ds at which the lines
cross (ds =1.53 keV/cm for 10%, ds =1.62 keV/cm for 1%) should be used to derive the number of
identified particles. The “separation” of the peaks is given by s =< dK > − < dπ >= 0.510 keV/cm
and σπ = 0.107 keV/cm, σK = 0.138 keV/cm.

III. Measures of “resolution”.

A. Definitions

In current usage, the “resolution” for PID is defined in terms of the separation s of the two peaks

seen in Fig. 4, and a multiple of σ. This means that f(d) are approximated with Gaussians. A more

explicit approach is to consider the number of particles given by the area A in Fig. 4.

This area is called the “overlap” and gives the number L of particles for which the mass assignment

is ambiguous. Here, it is the number of pions plus the number of kaons in A. A “separator” defined

by the value ds at which the lines cross is used to derive these numbers. As expected, the separator

depends on the fraction of kaons. The spectrum which would be obtained from measurements is given

by the solid line in Fig. 5. For p = 700 MeV/c, see Fig. 7.
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Figure 5: Similar to Fig. 4. The dashed line represents 106 pions, the dotted line 50,000 kaons. The
solid line corresponds to a spectrum measured in the TPC. The separator is ds = 1.56 keV/cm, and
L = 7370. The overlap L is approximately inversely proportional to the square root of the ratio of
kaons to pions.

Figure 6: Same as Fig. 5, but using F (d). The solid line corresponds to an experimental observation
of F ′(d) = −

∫ d
∞ f(d)dd. The broken lines are for the separate particles. The cross over point is

dc = 1.54 keV/cm. The number F (dc) for the solid line is the number of kaons in the spectrum.
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Figure 7: Similar to Fig. 4, for p = 700 MeV/c particles.The solid line represents a measured spectrum
for 106 pions and 50,000 kaons, the dashed line for 20,000 kaons. The dotted line is the calculated
function for pions, the symbols represent 50,000 and 20,000 kaons.

An alternative approach can be made by using the integral distribution functions F (d)

F (d) =
∫ d

0
f(d)dd (3)

In Fig. 6 (1 − F (d)) is given for the pions, and F (d) for kaons. Then, equal numbers of particles are

in the region of the overlap and their number is given by the value of F (dc) at the cross over point dc.

Because the functions f(d) are not symmetric, Gaussian fits to them may under-estimate the number

of pions in the overlap region by 50% or more. The procedure for the likelihood method is the same.

B. Examples

An example of the influence of the segment length x on the overlap, the value of the truncated

means < d > and σ is given in Table I. The calculations are made for pions and kaons with p = 650

MeV/c, for n = 25 segments with r = 0.70 for the six values of x given in the Table. Other examples

are given in Figs. 8-11.
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Table I. Average values < d > (keV/cm) and σ/ < d > (%), the cross-over values dc and overlap

fraction L for 50,000 pions and 50,000 kaons for different segment lengths x. In the last line, data are

given for a spectrum combined for all the spectra above it.

π K

x(cm) < d > σ/ < d > < d > σ/ < d > dc L(%)

2.0 1.328 9.09 1.757 8.64 1.53 5.4
2.2 1.347 8.8 1.781 8.39 1.55 4.9
2.4 1.364 8.54 1.803 8.18 1.57 4.4
2.6 1.380 8.32 1.823 7.99 1.59 4.1
2.8 1.394 8.13 1.841 7.82 1.60 3.7
3.0 1.407 7.95 1.858 7.67 1.62 3.5

2 → 3 1.37 8.65 1.81 8.29 1.57 4.8

It is seen that σ/ < d > decreases by about 13%, while the overlap decreases by about 50% with

increasing x. Overall, a smaller overlap can be achieved if track lengths cover only a small interval.

Note in Fig. 8 that < d > and σ depend not only on track length t, but also on the number of

segments. Figs. 9-11 show the strong dependence of the overlap on track length.

Figure 8: Dependence of < d > and σ/ < d > on number n of segments for tracks with t = 75 cm
and x = t/n. The irregularities are due to slight variations in t.

9



Figure 9: Overlap as a function of track length, which is represented by the number of segments.
All tracks include 13 inner segments and an increasing number of outer segments. Thus the number

10 on the abscissa corresponds to 4 outer segments and t = 24 cm, the number 26 includes 30 outer

segments and gives t = 75 cm for +, 112 cm for o and 150 cm for �.

Figure 10: Same as Fig. 9 for p = 650 MeV/c.
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Figure 11: Same as Fig. 9 for p = 700 MeV/c.

IV. Practical implementation

.

Computer programs and theoretical functions

During the last few years I have developed many FORTRAN programs which produce the simu-

lations presented here. Some of them are described next.

• ALCOV the primary collision spectrum and the convolutions leading to straggling functions

f(∆;x, p) for given x and momentum p.

• JCON converts f(∆;x, p) to linear scale in ∆ and convolutes with the resolution function

needed to account for multiplication statistics etc. Examples are shown in Figs. 2 and 3.

• AYYB Monte Carlo simulation of tracks for arbitrary combinations of number of track

segments with different x and analysis with the method of truncated means for single particles.

Examples are the functions shown in Figs. 4-6.

• BUXU Same as AYYB for two particles. An example are the functions shown in Fig. 7.

The cross-over and the overlap values are also calculated, results are shown in Fig. 9-11.

• LKHOOD Same as AYYB, but with the likelihood calculation.

Cross over points and overlap numbers are either obtained directly from BUXU or from graphs

like Figs. 4-7 or from the comparison of Tables resulting from AYYB.

I expect that the functions f(d; p, t), Figs. 4,5, and g(L; p, t) will be similar for various p and t
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and therefore can be scaled to a few “reference functions” with the method shown for Figs. 2 and 3.

So far I have not done that.

Specifically, the program AYYB calculates the functions f(d;m, r, ni, xi, no, xo, p) with the trun-

cated mean method, where m is an index for the particle type, r is the truncation ratio, xi and ni are

segment length and number of inner pad rows, xo and no for outer pad rows and p the momentum

of the particle. The moments < d > and σ, as well as the integral F (d) of f(d) are also obtained.

Results are shown in Table I.

The program LKHOOD calculates g(L;m,ni, xi, no, xo, p) with the likelihood method.

Evaluation of experimental data

Upon examination of Figs. 4-7 it is seen that several methods can be used to determine the type

and number of particles found in a measured distribution. If the calibration of J has been made in

terms of absolute values of energy deposition ∆ (e.g. in keV) as defined in Fig. 1, a measured spec-

trum f(d) of truncated values will have the appearance of the solid line in Figs. 5, 7 or F (d) of Fig. 6.

• A first estimate of the relative number of pions and kaons in Fig. 4, 5 or 7 can be made by

measuring the width of the experimental function at say f(d) = 100. Clearly this depends on the

fraction of kaons as can be seen in Fig. 4.

• A second estimate can be obtained from Figs. 5 and 6. In Fig. 5 the location dm of the minimum

between the two peaks is determined, then the corresponding number of K at dm is found in Fig. 6.

• A third estimate can be obtained by comparing the values of f(dpπ) and f(dpK) of the two peaks

in Fig. 4, where dp is the location of a peak. Calculated tables for different fractions of particles would

have to be made. Once the fraction of particles in a given spectrum has been found, the probability of

the mass assignment for a given track can be made from Fig. 6, calculated for the fraction of kaons.

• A fourth estimate can be made with a maximum likelihood search for the number of particles

in Fig. 5.

Equivalent estimates can be obtained from the likelihood method, but Eq. (2) requires calculated

spectra fi(∆, x, p) for at least two particles. For experimental data the conversion or calibration factor

relating J and ∆ must be determined [9].

From Figs. 4-7, separators ds can be chosen which define what fraction of each particle is to be

included in the spectrum for the other one. In Fig. 6, for example, the choice of a separator ds at 1.8

keV/cm would contribute only 1 in 105 pions to the kaon spectrum, but it would exclude 70% of the

kaons. At the cross-over point dc in Fig. 6, ds = 1.53 keV/cm, 3500 pions would be included in the

kaon spectrum, and 3500 kaons would be included in the pion spectrum.
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V. Conclusions

.

We have seen that a better discrimination between different particles can be achieved if the track

length t is taken into account. From Table I it is seen that the overlap L is inversely proportional

to segment length. Thus a cautious choice might be a spread of ±5% in x. Similarly, it follows from

Fig. 8 that the overlap even for a given track length does depend on the segmentation of the track.

The strong dependence of overlap on track length t seen in Figs. 9-11 indicates the need for taking t

into account in the analysis of experimental data. The function F (d) suggested in Fig. 6 permits the

assignment of a probability of mass for a given d. Only a small fraction of experimental data from the

full parameter space of the STAR has been compared with theory so far. Thus, further work needs

to be done to explore agreement between theory and experiment. For the ultimate in resolution, the

likelihood method should be used.

Appendix: low statistics example

.

The calculations in this Note have been made for very large numbers of particles. In practice,

this may not be achievable, e.g., for single collisions between two gold nuclei. Evidently it will be

necessary to calculate tables of separators and overlap values as a function of several ratios of kaons

to pions, see Fig. 4. Also it may be useful to establish tables of the full width at levels of the order

of 1%, see Fig. 7.

Figure 12: Simulated spectrum for 952 pions and 48 kaons with momentum p = 600 MeV/c for t = 80
cm and 45 segments. Calculated spectra for 475,000 pions and 25,000 kaons are shown by the broken
lines. Clearly, it will be difficult to establish separators from the experimental data, but a calculated
separator will give the number of kaons.
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